
Pitfalls and Tradeoffs in Implementing the Right to be Forgotten

ABSTRACT
Right to be Forgotten (RTBF) in one of the oldest and prominent
of the data rights. While its legal intention is straight forward (for
example, the GDPR describes it in just 417 words), the computing
community has found it challenging to implement this in practice.
For example, regulators have issued 216 RTBF violations in the
first five years of GDPR i.e., an RTBF failure once every 8 days, on
average. In this work, we identify the uncertainties and risks in
supporting RTBF from a computing perspective, and then propose a
layered approach towards mitigating those. To ground our research,
we design and implement RTBF capability into Elasticsearch, a
popular open-source search engine. Our work is the first to establish
a rich tradeoff space in RTBF compliance as well as recognize the
presence of RTBF anti-patterns in the real-world.

1 INTRODUCTION
“For every complex problem, there is an answer that is
clear, simple, and wrong.”

Henry Louis Mencken

Ancient wisdom says that everything that has a beginning has
an ending. However, when it comes to the lifecycle of personal data,
the ending was nowhere in sight. In fact, for much of its existence,
the computing community has evolved without treating deletion
as a first-class operation. This practice had to change when the
European Union introduced the Right to be Forgotten (RTBF)—first
in 2014, as a stand alone right applicable only to online search
engines and then in 2018, as a universal right applicable to all
data controllers through the General Data Protection Regulation
(GDPR) [2].

“Isn’t it just deletion?” has been the computing community’s
standard reaction to the requirements of RTBF. While the end goal
of RTBF is indeed the deletion of data, casting RTBF as just deletion
is akin to saying that eating is only for nutrition or sex is all about
reproduction. It is not surprising that over the last five years, an
RTBF penalty is issued once every eight days—a clear sign that the
computing and data management communities have continued to
oversimplify, misunderstand, and ill-implement RTBF. Our work is
an attempt to remedy this disconnect.

We demonstrate how RTBF exposes computing systems to un-
certainties and challenges at all stages of design and operation (in
Section-2.2), and how RTBF has invalidated principles and practices
of data management with decades of precedent (in Section-3.3).
To mitigate these impact, we propose a principled approach for
designing RTBF capability in computing systems (in Section-3). We
ground our work firmly in both law and computing—the former, by
basing our analysis on GDPR and the first five years of its enforce-
ment, and the latter, by implementing our findings in Elasticsearch,
a widely deployed search engine. This approach has helped us iden-
tify novel insights and make evidence-based recommendations that

previous domain-specific investigations have lacked. In particular,
we make three key contributions:

• Designing End-to-End RTBF Capability. We propose a
two-phase approach for introducing RTBF-capability into ap-
plications. First, in law-driven design, we analyze the legal
requirements of RTBF and map them into specific computing
and data management tasks. Then, in enforcement-driven re-
finement, we analyze the enforcement decisions to identify the
tradeoffs and choices in implementing those tasks.

• RTBFAnti-Patterns.RTBF anti-patterns are the long-standing
principles and practices of computing and data management
systems that serve their original purpose well, but make it
difficult to support RTBF. After analyzing the first five years of
RTBF enforcement in Europe, we identify six such RTBF anti-
patterns (summarized in Table 1 and discussed in Section-3.3).

• RTBF-Capable Elasticsearch. We analyze the RTBF capa-
bilities of Elasticsearch and identify the functionalities that
are lacking. Then, we demonstrate the tradeoff between dif-
ferent profiles of RTBF compliance (optimized for cost, per-
formance, or risk) and benchmark Elasticsearch using Rally.
We publicly release all our software artifacts and datasets at
https://github.com/lawfulcomputing/RTBF.

2 BACKGROUND AND MOTIVATION
In this section, we discuss the importance of the problem, review
related work, and establish the need for and novelty of our work.

2.1 RTBF
Right to be Forgotten, alternatively referred to as Right to Erasure, is
the right of an individual person to request an organization to delete
their personal data. RTBF gives people an ability to prevent others
from seeing their personal information that they deem old, inap-
propriate, irrelevant, or simply prefer to make private. This right is
distinct from right to privacy [1], which prevents governments and
other entities from forcing a person to reveal their personal data;
instead, RTBF is to be used for information that is already public,
but the individual no longer wants it to remain public.

RTBF became a legal right for the first time in 2014. In a case
against Google [17], the European Court of Justice ruled that Eu-
ropean people can request search engines to remove certain links
from their search results, if their privacy concerns outweigh the
public interest in the information contained in those links. Later,
when GDPR went into effect in 2018, RTBF was expanded to cover
all data controllers, not just search engines. However, GDPR did not
make RTBF an absolute right i.e., for an RTBF request to be honored,
it has to meet one of the six conditions and not fall under one of
the five exemptions (we show these in Figure 1, where we produce
GDPR article 17 verbatim). To keep our discussion concrete, we
focus exclusively on GDPR’s version of RTBF and prefix all articles
of GDPR with G .

https://github.com/lawfulcomputing/RTBF

Table 1: RTBF Anti-Patterns in computing and data management systems

RTBF anti-patterns Real-world examples

1 Using personal data as primary keys Copenhagen company unable to support fine-grained RTBF due to database constraints [10]

2 Anonymizing data instead of deleting AXA anonymizing personal data to preserve its knowledge beyond expiry date [28]

3 Keeping personal data untagged Clearview AI requiring users to provide an exact copy of the photo to be deleted [29, 54]

4 Mismanaging the depth of deletion Google Search propagating RTBF requests to websites that published the original URL [11]

5 Logging without checks and bounds Belgian company storing excessive information about RTBF requests in their logs

6 Employing excessive verification Twitter requiring photo ID for RTBF while allowing account creation without it [25]

The need for RTBF arose in early 21st century when organiza-
tions began collecting personal information at scale, and search en-
gines made these accessible globally. As Viktor Mayer-Schonberger
has chronicled in his book [49], throughout the human history, for-
getting was the norm and remembering was the exception. Given
how this phenomenon gotten largely reversed in the recent decades,
RTBF is hailed a countermeasure against this trend. That said, RTBF
has received criticisms [26, 30, 36, 67, 69] as a means to rewrite his-
tory, weaken the freedom of expression, enable censorship and
other less desirable social outcomes. While this is an important
debate for our society, the focus of our work is in exploring the
challenges that computing systems face in implementing RTBF and
how to systematically solve them.

2.2 Challenges in Complying with RTBF
When new regulations are enacted, legal experts and policy mak-
ers tend to limit their expositions to core legal principles that are
broadly interpretable and will hold the test of time. While legally
prudent, this strategy makes it challenging for computing systems
to adapt and support regulations such as RTBF. These challenges
can come in the form of lack of precise specifications, undefined
tradeoffs in performance-vs-risk, uncertainties in managing new
technologies, among others. We illustrate how such challenges can
manifest at different stages of system design and operation:

Examples at architecture level. Systems that are architected with
little or no prior consideration for RTBF, find it hard to add that
capability later. For example, an organization that uses a personal
data as a primary key in their databases, would find it tricky to
delete that item. Problems could also stem from unwise choices in
organizing the data. For instance, Clearview AI built their facial
recognition system by training on billions of images from the Inter-
net. However, when people approached them with RTBF requests,
they realized that they could not identify all the photos that belong
to a given person (since they had not tagged the images at the time
of collecting or processing). They were fined in 2022 by multiple
regulators [20, 29, 54] for this limitation. More generally, RTBF in
machine learning systems is a nascent area of research with no
generic or efficient solutions that can help models forget a select
data in their training set.

Examples at design and implementation level. RTBF opens
up many uncertainties and unknown tradeoffs at the systems level.
Consider the latency of deletion i.e., how soon after the request,
should the data be removed. Designers could opt for a strict com-
pliance by making deletions synchronous in real-time, or choose
a relaxed compliance by allowing deletions to happen eventually.
Prior work [63] has shown the effect of synchronous deletion on
two popular database systems, Redis and PostgreSQL, both of which
experienced a slowdown of up to 20%. On the other hand, eventual
compliance allows stale data to linger in the system for unspecified
amount of time, posing security and privacy risks. Next, consider
the depth of deletion i.e., should the data be deleted from all mem-
ory and storage subsystems going all the way to the hardware, or
simply be forgotten at the service level. While the former leads to
a strict form of compliance, it adds significantly to the latency and
complexity of the deletion process. The latter, however, exposes
the organization to legal risks since other services may unwittingly
end up using the said data. GDPR does not offer clarity on many
such systems level issues.

Examples at operation level. RTBF is not an absolute right i.e.,
just because an RTBF request is made on valid personal data by
a verified data subject, does not mean that it should be honored.
GDPR requires all controllers to balance the rights of individuals
with the interests and obligations to the society. This is challenging
for organizations since it turns RTBF from a generic operation to a
highly individualized process, thereby making it hard to fully auto-
mate it. The gravity of this challenge is evident when you consider
that RTBF is operated largely as a manual process at Google and
Microsoft [9, 50] (organizations that are considered technologically
sophisticated), and that they take about 6 days, on average, to arrive
at an RTBF decision. These challenges are so pervasive that 41% of
all RTBF violations are due to incorrectly interpreting the validity
of RTBF requests [64].

2.3 Related Work

RTBF in computing systems. Several organizations including
Google [9], Microsoft [50], and Wikipedia [34] have shared details
about how their applications support RTBF. These reports primarily
focus on aggregate-level characterization of the received RTBF

2

requests and their responses, but do not offer much details on the
technical or policy aspects of their internal RTBF implementation.

Orthogonal to this perspective, researchers have explored how
people perceive RTBF support on social media websites [40, 51],
and the challenges they face while exercising RTBF [39, 65]. This
body of work focuses on human-computer interfacing for RTBF,
and treats the target computing systems and services as black boxes.
In contrast, we focus on designing and implementing computing
systems that can support RTBF.

Deletion in computing systems. Deletion is one of the funda-
mental operations of database systems (as represented in CRUD,
the venerable acronym for Create-Read-Update-Delete), yet it had
long been treated as a second-class operation. However, GDPR and
the onset of data rights has brought the attention of the computing
community back to deletion. Key advances in the last five years
include: Google cloud publishing their deletion pipeline and guar-
anteeing to erase all copies of the data within 180 days of requesting
[3]; Facebook designing a system that can assure correctness of
deletion [22]; researchers from Boston University building a key-
value database that lets users control deletion latency [61]; and
Berkeley’s cryptographic framework for data deletion [35].

Given the important role training data plays in machine learning,
the notion of machine unlearning i.e., making ML systems forget
all they learnt from a given data, has gained traction in the AI/ML
community [16]. These work primarily focus on making the dele-
tion efficient for certain models [13, 46, 68] or specific applications
[18, 37]. Lastly, secure data deletion i.e., deleting data irrevocably
from a physical storage, has been an active area of research in file
systems, operating systems, and backup systems [8, 31, 41, 56–58].

A key trait of all these work is that they use RTBF as a motivation
to implement deletion in a target computing system (say, databases,
file systems, cloud computing, machine learning systems, etc.,), but
they largely abstract out the legal and policy aspects of RTBF. A
central thesis of our paper is that RTBF is not just deletion, and
by ignoring the interplay between law and computing, these prior
work fail to recognize important system design issues and tradeoffs.

3 DESIGNING RTBF
We propose a novel two-phase approach to designing end-to-end
RTBF capability. This is motivated by a core dichotomy between
computing and law—namely, while computing applications are cre-
ated to be precise and specific, laws are written to be abstract and
interpretable—and our attempt to bridge this divide. In phase-1, we
analyze the language of the law (which changes rarely) and map it
to a set of high-level computing tasks. In phase-2, we examine the
enforcement of the law (which evolves frequently) to identify avail-
able design choices and tradeoffs, and to weed out non-compliant
ones.

3.1 Phase-1: Law-driven Design

Mapping Legal Intentions to Computing Tasks. By analyzing
RTBF from a computing perspective, we identify four key tasks
that cover all of its legal requirements. Figure 1 highlights this
process by showing the legal text, the computing tasks, and the

mapping between the two. At this stage, it is important to keep the
RTBF tasks high-level so that we do not lose the generality and
interpretability afforded by the law, while at the same time, we
set up a foundation to methodically explore low-level design and
implementation choices in phase-2.

• Interface with data subjects. This task encompasses all the
input output operations of the RTBFmachinery. An RTBF capa-
ble system must provide a mechanism for people to submit an
RTBF request and to get a response whether the said data was
forgotten (and if not, an explanation for not doing so). While
G 17 does not require any particular modalities for interfaces,
other articles stipulate that interfaces should not impose ad-
ditional burden for exercising data rights. Commonly offered
interfaces for RTBF include web forms, mobile apps, email,
postal mail, and telephone. In practice, the interfacing task
also filters out spurious RTBF requests by authenticating the
person making the request.

• Establish deletion policies. RTBF is not an absolute right.
For an RTBF request to be honored, it has to meet at least
one of the six conditions (laid out in G 17.1a through 1f), and
not fall under any of the five broad exemptions (specified in
G 17.3a through 3e). The goal of this task is to resolve this
contention and produce a yes or no decision (i.e., whether to
honor an RTBF request or not). In real world, this task has
proved quite challenging to be fully automated. For instance,
Google Search still manages its policy resolution as a human-
driven process, taking 6 days, on average, to resolve a request
[9]. This task should also govern if data that is shared with
external applications and datastores should also be deleted.

• Erase data from data processing systems. This task is re-
sponsible for erasing data from all software and hardware
systems that process data including application software, li-
braries and system software, operating systems, hardware pro-
cessors, cloud and other external processing systems. In order
to make data processing performant and reliable, these systems
may keep data in their in-memory data structures, in caches
and runtime engines, in logs, in networked and remote pro-
cesses, among others. So, the goal of this tasks is to propagate
the deletion request programmatically to all subsystems (both
internally and externally) and to ensure that data is deleted
in a timely manner. The main challenge from a computing
perspective is that many subsystems lack native support for
fine-grained data deletion, and many systems implement them
as lazy or shallow deletes.

• Erase data from data storage systems.1 The final task is
to erase data from software and hardware systems that offer
long-term, persistent storage for data. These include database
systems, file systems, cloud storage, backup systems, among
others. The key challenge from computing perspective is that
most systems are optimized for performance, scalability, and
reliability, which makes data deletion a second-class operation.

1GDPR does not demarcate between systems that store data vs. those that process data.
However, from a computing perspective, this distinction is significant. For e.g., they
are different subfields of the domain. So, we explore them under two distinct tasks.

3

Interface with
Data Subjects

Establish
Deletion Policies

Erase data from
Application Software

Erase data from
Data Mgmt Systems

1. The data subject shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay and the controller shall have the obligation to erase personal data without undue delay
where one of the following grounds applies:

(a) the personal data are no longer necessary in relation to the purposes for which they were collected or otherwise processed;
(b) the data subject withdraws consent on which the processing is based according to point (a) of Article 6(1), or point (a) of Article
9(2), and where there is no other legal ground for the processing;
(c) the data subject objects to the processing pursuant to Article 21(1) and there are no overriding legitimate grounds for the
processing, or the data subject objects to the processing pursuant to Article 21(2);
(d) the personal data have been unlawfully processed;
(e) the personal data have to be erased for compliance with a legal obligation in Union or Member State law to which the controller
is subject;
(f) the personal data have been collected in relation to the offer of information society services referred to in Article 8(1).

2. Where the controller has made the personal data public and is obliged pursuant to paragraph 1 to erase the personal data, the
controller, taking account of available technology and the cost of implementation, shall take reasonable steps, including technical
measures, to inform controllers which are processing the personal data that the data subject has requested the erasure by such
controllers of any links to, or copy or replication of, those personal data.

3. Paragraphs 1 and 2 shall not apply to the extent that processing is necessary:

(a) for exercising the right of freedom of expression and information;
(b) for compliance with a legal obligation which requires processing by Union or Member State law to which the controller is subject
or for the performance of a task carried out in the public interest or in the exercise of official authority vested in the controller;
(c) for reasons of public interest in the area of public health in accordance with points (h) and (i) of Article 9(2) as well as Article 9(3);
(d) for archiving purposes in the public interest, scientific or historical research purposes or statistical purposes in accordance with
Article 89(1) in so far as the right referred to in paragraph 1 is likely to render impossible or seriously impair the achievement of the
objectives of that processing; or
(e) for the establishment, exercise or defence of legal claims.

Article 17: Right to be Forgotten RTBF tasks

Figure 1: Mapping RTBF’s legal requirements into computing domain. We identify four key tasks of RTBF capable systems (on
the right), and the text of the regulation that requires each of these (on the left).

Acquire data

Data subject

Store data Process data

External sources

Data sharing w/
external orgs Internal compute

Cloud and 3rd party

Databases
and file sys

Share data Archive data

Unwanted
data

Long-term
storage

Destroy data

Figure 2: Demonstrating the sufficiency of the RTBF tasks. Figure shows the full lifecycle of data from (left to right) acquiring,
storing, processing, sharing, archiving, and to destroying. Then, we show how the four RTBF tasks (represented by blue dotted
arrow, green solid arrow, and red-yellow double lines) can propagate and implement deletion at any of the lifecycle phases).

This manifests in not having APIs to delete data from certain
subsystems, not offering time guarantees on deletions, etc.

Necessity and Sufficiency of RTBF Tasks. We want to establish
that the four identified RTBF tasks are both necessary and sufficient

to meet the legal obligations of RTBF. To ascertain the necessity of
the four RTBF tasks, we employ proof by contradiction. Consider
an RTBF-compliant system that does not perform interfacing with
data subjects. In such a system, no data subject can send their re-
quest to be forgotten, nor would they hear back from the system

4

if their data was erased. This would be a violation of the legal re-
quirements of RTBF (as stated in the first sentence of G 17), in turn
contradicting our assumption that the system was RTBF compli-
ant. Next, let us consider an RTBF-compliant system that does not
have established policies for deletion. In absence of policies, such a
system has to blindly honor all RTBF requests or summarily reject
all RTBF requests. However, the first approach violates the legal
requirement that any exercising of the individual rights must be
balanced against the public interest (as stated in G 17.3(c)) and the
latter approach simply devoids data subjects of their RTBF rights.
Thus, absence of policies would make the system non-compliant
with RTBF, a contradiction. Finally, consider an RTBF-compliant
system that does not have the ability to erase data from applica-
tion software or the capability to erase data from data management
systems. When such a system receives a legitimate RTBF request
that must be honored, it will be unable to meet its obligation of
erasing data without undue delay (as specified in G 17.1), thereby
invalidating the original assumption on RTBF compliance. Thus, we
have established the necessity of the four RTBF tasks in achieving
RTBF capability.

To establish sufficiency, we consider the lifecycle of data from
a computing perspective. As shown in Figure 2, starting from the
left, data is acquired either directly from data subject or from an-
other controller; then it is stored in databases, file systems, and
other short- to medium-term storage systems; third, it is consumed
by data processing infrastructure; optionally, shared with external
organizations; then it may be archived for long-term storage and
retrieval; and finally, when it is no longer needed, it gets destroyed.
Since all data have to be in one or more of these phases (by def-
inition of the lifecycle), if we can show that the four RTBF tasks
can propagate deletion request and bring about deletion in all these
phases, then we would have established the sufficiency condition.
First, we see that the RTBF tasks three and four (i.e., erase data from
data processing systems and erase data from data storage systems)
naturally cover the store, process, and archive phases (as marked
in double yellow-red lines). Next, the RTBF task two i.e., organiza-
tion’s deletion policy, can specify rules for how an RTBF request
is propagated from one phase to another, how each component
responds to such a request, and how to handle any failures. We indi-
cate this control flow in solid green arrows in Figure 2. Finally, RTBF
task one, namely interface with data subject, can propagate deletion
requests from data subjects to organization’s storage and compute
phases, and convey their responses back to data subjects (as seen
by dotted blue lines). Thus, we have established that the four RTBF
tasks are sufficient to cover all the deletion-related control and data
flows in the full lifecycle of data.

3.2 Phase-2: Enforcement-driven Refinement

Tracking the Enforcement of GDPR.GDPR follows a distributed
model of enforcement. Though the law is legislated centrally by the
European parliament, its implementation is left to member nations,
each of whom must enforce it within their countries. Thus, on
the ground, GDPR is enforced by ∼28 independent and distributed
agencies called the Data Protection Authorities or DPAs. Each DPA
operates autonomously, determining their own priorities and en-
forcement strategies, and working within the budget allotted by

Data storage

Data processing

Deletion Policies

Interface w/ DS

 0 20 40 60 80 100 120

Total citations in enforcement decisions

Figure 3: Distribution of citations across four RTBF tasks

its national government. Finally, to avoid significant divergence in
the application and interpretation of GDPR across countries, the
law has set up a trans-national agency called the European Data
Protection Board (EDPB), which can offer biding rules to DPAs on
disputed issues.

There are several projects that track the enforcement of GDPR by
crawling, collecting, and annotating enforcement decisions byDPAs
and EDPB. Prominent ones include GDPRhub [62], Enforcement
Tracker [45], and GDPRxiv [64]. We decided to use the corpus from
GDPRxiv since it is based on an open methodology and also has
the largest number of enforcement decisions across all repositories.
While there are 4206 enforcement decisions in the first five years
of GDPR (between 25-may-2018 to 25-may-2023), we are interested
in 216 of them that cite G 17. Our analysis and findings in the rest
of the section are based on these RTBF related decisions.

Understanding RTBF Enforcements in the Field. RTBF enforce-
ments have been issued, on average, once every 8.4 days. About 55%
of these enforcements are warnings and criticisms that do not im-
pose a financial penalty (these tend to be cases where the violation
is a first-time offense, did not affect a large number of the people,
and where the controller cooperated with the DPA to fix their vio-
lation). Amongst the cases that were levied a financial penalty, the
highest was €27.8M by the Italian DPA on the telecommunication
company TIM Group and the average penalty over the five year
period was €1.09M. Google received the most enforcements of any
organization at a count of six. While these are interesting statistics
about RTBF enforcement, our main goals are: (i) to analyze the fail-
ures from a computing perspective, and (ii) to identify how these
enforcements influence the design choices and tradeoffs available
for computing systems.

First, for each RTBF decision, we identify the main reason(s) for
failure, and then map it to one or more of the four foundational
blocks of RTBF (as discussed in Section-3.1). Since this annotation is
too big to be included in the paper, even in the appendix, we make it
available on the project website. Figure 3 plots this distribution with
the number of citations on the X-axis and the corresponding RTBF
task they failed on the Y-axis. We see that 55% of enforcements cite
failures in interfacing with data subjects, while 38% cite failures
in policy resolution. While this distribution is skewed, it is not
entirely surprising since UI and policy failures are easier to catch
and they impact people immediately (as opposed to failures in data
processing and data storage systems). Next, we analyze enforcement
decisions, both individually and collectively, to identify the design
and implementation aspects of RTBF that are influenced by them.
We present five such findings:

5

• Response Time. It measures the time between making an
RTBF request and receiving the first response from the con-
troller. The recommended value comes from G 12(3), which
states that all data right requests should be responded within
one month of receipt (while allowing exemptions for cases
requiring complex processing). Yet, this is one of the most
cited reasons for RTBF failures, accounting for ∼35% of all
enforcements. Enforcements have clarified the minimum ex-
pectation: controllers must acknowledge RTBF requests within
a month of receipt and explain how they would be handled;
though RTBF decision-making and actual data deletion may
take longer.

• Explainability. This measures the ability of a data subject
to understand how their RTBF request was handled. While
the law is not explicit on how in-depth or individualized the
explanations have to be, the enforcements have shed light
on what is insufficient. First off, it is clear that explanations
are important when rejecting RTBF requests. For instance,
in two separate cases against Google and Spotify, regulators
agreed that the companies were correct in rejecting the RTBF
requests but fined them for lacking proper explanation in their
responses. Secondly, precedents indicate that the controllers
must explain the key reasoning behind their decision. This
could be due to influence of other laws (for instance, RTBF
cannot be exercised on betting data since online betting laws
require this data to be kept for five years—Bet365 in Denmark);
legal obligations (say, the controller keeps a log of all RTBF
requests and no RTBF will be supported on that log itself—
unnamed company in Belgium); or business practices (such as
not allowing RTBF on payment default data unless the debt
has been paid off—unnamed company in Hungary). Straight
forward as these are, none of these explanations were included
in the RTBF responses, and all three controllers were fined or
warned for omitting them.

• Deletion latency. Deletion latency is the time between a con-
troller approving an RTBF request and actually deleting the
data. As such, this metric is unrelated to and unaffected by
response time. While the law simply specifies “without un-
due delay” in G 17(1), the enforcements offer more clarity. At
one extreme, French regulators fined the retailer Brico Prive
for simply deactivating user accounts upon receiving RTBF
requests instead of actually deleting their data—establishing
that deletion latency cannot be infinity. While on the other
hand, Austrian regulators accepted the practice of purging the
deleted data in batches once every year as long as the con-
troller commits to stop using that data immediately. Given
these precedents, it would be prudent to have a well-defined
schedule for purging the data, taking into account the under-
lying technical systems, and then sharing this number with
the users. An example of this is Google cloud’s committment
to thoroughly delete all RTBF data within 180 days [3].

• Exemption handling. Accommodating exemptions in RTBF
decision-making has proven to be a difficult task in the field
(accounting for 38% of all enforcements). A key question from
computing perspective is if this could be fully automated. The

volume of failures and number of exemptions cited in them
indicate that we may be far from that. Thus far, 41 cases say ex-
emptions from within GDPR were misinterpreted, 24 cases say
the interplay of RTBF with non-GDPR laws was disregarded,
and 13 cases say both were incorrectly handled. So, it would
seem that Google search’s approach of using skilled human
arbiters is not just a risk-averse approach but indeed the state
of the art in policy resolution [9]. Also, it must be noted that,
so far, we have not seen a case where a controller was pe-
nalized for honoring an RTBF request that should have been
rejected. So, it may be prudent to weigh more in favor of hon-
oring the RTBF request unless the applicability of exemptions
is glaringly obvious.

• Deletion granularity. This metric represents the standard
unit of data on which RTBF could be exercised. At one extreme,
a controller could restrict RTBF to individual items of data. This
is appealing for controllers since it makes the identification and
deletion of data straight forward. However, since it puts extra
burden on people exercising RTBF, this practice was deemed
insufficient in a case against Clearview AI, which required
people to submit the exact copy of the photos to be deleted (as
opposed to just the person’s identity) [54]. The other extreme of
granularity is the all or nothing approach, where the controller
only supports deleting all data belonging to a person. In two
separate cases, regulators in Austria and Denmark, have stated
that technical constraints arising from database management
systems cannot be used to restrict users from deleting select
items of data. In light of these enforcements, a safe middle
ground would be multi-granular RTBF. For example, Google
Search allows deleting search history by individual queries, by
a date range, or the entire search history.

Scope and limitations. Unlike phase-1 of the design, phase-2 is
not comprehensive i.e., several aspects of design and implemen-
tation may still be open to broad interpretations unless and until
regulators and courts rule on them. Also, phase-2 is never com-
plete: as new enforcements are issued, more clarity emerges on
the design aspects and new thresholds are established. This makes
RTBF compliance a moving target, and requires systems to continu-
ously albeit periodically evaluate their design choices and operating
practices to ensure consistency with new precedents. Finally, in
presenting these five findings, we focus on aspects that are broadly
applicable and not specific to particular domains like healthcare.
We also exclude findings that have little or no technical bearing,
say controllers refusing to accept RTBF requests.

3.3 RTBF Anti-Patterns
Anti-patterns are principles and practices of software design that
seem intuitive and useful in a narrow context, but prove ineffective
in a broader system and over long term. Examples of anti-patterns
include premature optimization of functions, use of magic numbers,
and creating a god class in object design, among others. The idea of
anti-patterns was originally conceived by Andrew Koenig [43] and
later expanded by Brown et. al., [15]. In a similar vein, we define
RTBF anti-patterns as the long-standing principles and practices of
computing systems that serve their original purpose well, but make

6

it harder to support RTBF. After analyzing the RTBF enforcement
corpora, we have identified five such RTBF anti-patterns:

1. Using personal data as primary keys

Personal data, especially those that uniquely identify people, say
phone numbers, email, or national IDs, have long been used as
primary keys in database systems. While GDPR does not preclude
this practice, it often results in practical difficulties in honoring
RTBF. For instance, when the Danish regulators found that Taxa (a
Copenhagen based taxi company) had difficulties in removing user
data because of database systems constraint, they were fined and
asked to redesign their data storage systems. Similarly, Carrefour (a
French retail company) resorted to using ad hoc tools to circumvent
database system constraints during an investigation by the French
regulator, ultimately resulting in €2.25M penalty.

2. Anonymizing personal data instead of deleting

Organizations may chose to anonymize the personal data upon
getting an RTBF request [7, 23, 55]. This is appealing because it
lets the controller derive some benefit from the data that otherwise
would be permanently deleted. However, a robust anonymization
is hard to achieve. For example, in 2019, the Danish DPA fined a
taxi company for anonymizing its 9 million taxi ride records while
retaining enough auxiliary data to be able to reconstruct the dataset
[10]. Even when it is well done, prior research has shown that not
all anonymizations hold the test of time [53, 60] and may need
to be constantly evaluated to ensure anonymity [21]. Lastly, it is
important to note that GDPR considers the act of anonymizing
personal data as a data processing activity in itself [7]. So, the
controller must ensure that they have a legitimate purpose or a
legal basis to perform anonymization and it cannot be used as a
tool to evade the applicability of GDPR. A case in point: in 2020,
the Greek regulators reprimanded the insurance company Axa for
anonymizing its customer data so that they could retain it beyond
the date of expiry or date of RTBF request [28].

3. Keeping personal data untagged

Tagging personal data with attributes such as its purpose, time-to-
live, associated person, objections to its use, etc., makes it possible
to comply with people exercising their data rights. However, data
tagging is a resource-intensive operation, both computationally
and on the storage system [63]. Thus, there is a tendency to avoid
it or at least, delay it to a point when data subjects actually exercise
their rights. For example, consider Clearview AI—a company that
collects images of people’s faces from the public Internet and social
media to build an online global database, which is then used to
offer facial-recognition-as-a-service to law enforcement and pri-
vate organizations. When EU citizens approached Clearview AI to
exercise RTBF, they were instructed to provide photographs instead
of just their identities, so that their photos could be matched in the
database. Several regulators [20, 29, 54] found this practice to be an

impediment to people exercising their RTBF rights, among other
things, and issued penalties of over €40M.

4. Mismanaging the depth of deletion

G 17 does not specify how deep should a deletion be percolated,
instead leaving its interpretation to data controllers and regulators.
So, simply extending the existing delete workflows to RTBF may
lead to non-compliant behavior. At one extreme, Brico Prive, a
French online retailer, had the practice of simply deactivating the
user handles upon receiving RTBF requests while still retaining
the user data in the database. The French regulators deemed this
an incomplete deletion and fined them €500K [19]. At the other
end, consider Google Search’s implementation of RTBF. When they
determine a link has to be delisted, they not only delete it from their
databases but also propagate the deletion request to the original
website that published the content. The Swedish regulators fined
Google for this practice €7M [11] citing that Google had no legal
basis for propagating deletion requests externally (which would
violate user’s privacy).

5. Logging without checks and bounds

Logs are relatively inexpensive to generate and to store, and have
been used for a variety of purposes including debugging and trace-
ability, post-hoc analysis and audit, and as reliability primitives.
Since GDPR allows (via G 24 and G 30) the use of computer logs
as evidence in establishing compliance, organizations have tended
to play it safe in storing any and all forms of logs for possible fu-
ture use. However, logging can conflict with the spirit of RTBF. In
2022, the Belgian regulators reprimanded a controller for storing
excessive information about RTBF requests in their logs. Given that
GDPR defines the act of logging as a data processing activity in
itself, care should be taken (i) to not store any RTBF deleted data
in logs, (ii) to follow the principle of data minimization i.e., do not
store anything that is not essential, and (iii) to set a date for expiring
old logs. Any logging system that ignores these requirements risks
violating RTBF.

6. Employing excessive verification

In contrast to other GDPR rights, RTBF, by definition, is for single
and definitive use. That is, once RTBF is exercised successfully (i.e.,
a dataset has been erased), no other right could be exercised on
the same dataset. This has prompted some organizations to employ
stricter and excessive forms of user verification, in turn placing
an undue burden on those exercising RTBF. For instance, the Irish
regulators issued reprimands to Groupon in 2020 [24] and to Twitter
in 2022 [25] for requiring national photo IDs to exercise RTBF but
allowing people create accounts without such IDs.

Scope and limitations. The anti-patterns presented here should
be treated as starting points towards making systems adapt better
to RTBF. They should not be considered exhaustive (i.e., it may
be possible to identify additional anti-patterns by analyzing the

7

Table 2: Exploring RTBF tradeoff with compliance profiles

User
interface

Response
time

Policy
resolution

Policy
depth

Data
identification

Deletion
API

Deletion
latency

Cost-optimal native 30 days automated codified ML-based built-in –

Perf-optimal – – – – programmatic built-in lazy

Risk-optimal multi-
modal

ASAP
per-request manual multi-

regulatory pre-tag custom real-time

corpora with a different perspective) or prescriptive (i.e., there is no
guarantee that having these in your systems will incur a penalty
nor that avoiding them will be enough to avoid a violation). Finally,
anti-patterns are distinct from dark patterns [12, 14, 38, 47, 48]
which are techniques and practices aimed at deceiving the users
and manipulating them into taking certain actions. In contrast, anti-
patterns do not have any malicious intent built-in; instead, they
emerge by looking differently at principles and practices that have
served as good patterns elsewhere.

3.4 RTBF Tradeoffs
Wewind up our design section with a discussion on tradeoffs. Trade-
offs emerge naturally in RTBF because of the broad interpretability
of the law. However, there is a minimum bar to be met: any com-
pliant system must support the four basic functionalities of RTBF
(as detailed in Section-3.1) and must avoid non-compliant behavior
highlighted by prior enforcements (in Section-3.2). This still leaves
us with a broad set of design and operational choices. Our goal
here is to methodically evaluate this space and define compliance
profiles that optimize for given metrics.

Compliance profiles.We choose performance, cost, and risk as the
three foundational metrics to optimize on. We define performance-
optimal to be the choice that maximizes the system’s performance,
while still meeting the minimal level of compliance. In contrast,
cost-optimal would be the choice that achieves the lowest aggregate
cost of designing and operating the system, while still meeting
the performance requirements and being minimally compliant. Fi-
nally, risk-optimal is the choice that offers the lowest probability
of RTBF violation while still maintaining the minimally required
performance levels. To keep our analysis agnostic of any particular
application, we treat our metrics as abstract entities and do not
assign numerical values. Table 2 lists these compliance profiles.

Design alternatives and tradeoffs.We elaborate on seven design
aspects that allow multiple valid ways to implement RTBF support.
First, the user interface. By definition, all computing systems will
have a user interface, and for modern systems, these tend to be web
interface and/or mobile app. So, the cost-optimal option would be
to add RTBF support on this native interface. On the other hand,
offering RTBF support using multiple modalities (say email, tele-
phone, postal mail, etc., in addition to native interfaces) will make
it easier for a broad set of people to exercise RTBF, and thus the
risk-optimal choice. Second, the response time. G 12(3) requires that
all data right requests should be responded to within 30 days. So,

the cost-optimal option is to process RTBF requests in batches once
every 30 days. If one wants to be risk-optimal, then RTBF requests
could be processed as soon as they arrive, and responded to on an
individual basis without waiting for 30 days. Next two parameters
concern policy resolution. The cost-optimal option would be to auto-
mate the process of policy handling by having a set of programmatic
rules that determine the RTBF decision. While this approach saves
on manual labor (and also speeds up the decision-making process),
it is impossible to capture all the exemptions arising out of RTBF’s
dependency on other GDPR articles as well as the influence of non-
GDPR laws on RTBF (for e.g., children’s rights, domestic abuse laws,
etc). So, the least risky approach, as practiced by Google Search
[9], is to have an extensive policy framework and to allow qualified
humans to adjudicate on RTBF requests on individual basis. Thus
far, we have ignored providing options for performance-optimal
version since the first four design aspects do not interfere with the
runtime performance of the system.

The fifth parameter is data identification i.e., how to identify
all the data items that match an RTBF request. The performance-
optimal choice would be to programmatically identify all the data
and then invoke deletion APIs on them. However, this may not al-
ways be possible since it requires data to be structured, pre-labeled,
and all data storage systems to be fully connected. So, for orga-
nizations with large quantities of unstructured personal data col-
lected over years, this may not be feasible. Instead, a cost-optimal
approach would be to employ AI/ML services that identify data
based on heuristics. For example, Amazon Macie [4] provides one
such service. If the number of RTBF requests is small enough, then
AI/ML based approaches will be cost-optimal. However, the risk-
optimal strategy would be do pre-tag the entire corpora of personal
data either at the time of ingestion or offline using human labelers.
Spending the time and effort on labeling results in accuracy levels
that are not realistic in current generation AI/ML systems.

The last two aspects concern the actual act of deletion. All soft-
ware systems and data management systems must provide APIs
to delete a given data (because if they don’t, they cannot be used
in a GDPR-compliant system). Using these native APIs will likely
result in both performance- and cost-optimal solutions. However,
deletions implemented by current generation systems may not be
thorough or timely [27, 44, 61]. To remedy this, a cleansing delete
could be implemented either by modifying the existing software
systems or by using external libraries. Such cleansing deletes would
clean up the data from all the internal data structures; memory,

8

cache and file subsystems; logs, snapshots, and replicas; and per-
colate the request to underlying hardware–thereby, providing the
risk-optimal variant. Finally, the deletion latency. Though GDPR has
set a strict upper bound on the RTBF response time, regulators have
shown considerable leeway for deletion latency (as discussed in
Section-3.2). So, a performance-optimal solution is to perform lazy
deletions (i.e., mark the data as deleted in real-time, but perform
the actual removal of the data asynchronously when the system
load is low or periodically). In contrast, a risk-optimal approach
would be to immediately trigger deletion since retaining any to-be
deleted data exposes organizations to additional risks. For instance,
if that date gets breached before the deletion cycle is completes.

Scope and limitations. First off, the set of design parameters pre-
sented in Table 2 are not exhaustive. Instead, it highlights only
those aspects where the choices diverge for different optimization
metrics. For instance, we do not include data subject verification,
even though it is an important design consideration for RTBF sys-
tems. This is because there is one good way to do it, and alternative
options may violate enforcement precedents. Second, compliance
is contextual i.e., what a system must do to be compliant is depen-
dent on a variety of factors such as type and volume of personal
data, nature of processing, security measures employed, size of the
organization, among others. Thus, compliance profiles presented
here will not be universally applicable and may need to be adjusted
for a given controller.

4 RTBF-CAPABLE ELASTICSEARCH
To ground our work, we select search engines as the target appli-
cation. This is a natural choice since search engines were the first
software system to be subject to RTBF (more details in Section-2.1).
Importance of RTBF in search engines is emphasized by the fact
that EDPB published a dedicated guidance on this matter in 2020
[32]. Our analysis and evaluation in the rest of the section are based
on Elasticsearch [5], an open-source search engine that is amongst
the most widely deployed in the world.

4.1 Is Elasticsearch RTBF Capable?
Elasticsearch is a distributed search engine that can support search
analytics in near real-time at petabyte scale. Given its prominence
in the data analytics ecosystem, several prior work have analyzed
its GDPR readiness [6, 66]. However, in these analyses, support for
RTBF has been simply reduced towhether Elasticsearch provides APIs
to delete data. We aim to explore this question in more depth and
with nuance, based on the design considerations of Section-3. Since
Elasticsearch is primarily an application and data management
system, our exploration will focus on these (while covering any
applicable aspects of UI and policy layers). Below, we investigate
Elasticsearch’s RTBF capability along two axes: what RTBF tasks
can it perform and how well does it perform them:

• Deletion APIs. Elasticsearch offers two direct options: the
RESTful method DELETE and the API _delete_by_query. The
former can be used to delete a document (equivalent of tuples in
DBMS) or an index (equivalent of an entire database in DBMS),
while the latter is useful for deleting a set of documents that
match a query. Elasticsearch also provides a mechanism to

remove contents within a document (equivalent of setting a
field to null in DBMS) through the _update_by_query API.
Finally, Elasticsearch used to support a time-to-live field
for each document, which ensured that a given document is
automatically deleted after the specified time, but this has been
deprecated since version 5 (circa June 2018).

• Deletion granularity. It is straightforward to see that Elastic-
search’s built-in deletion APIs and methods (discussed above)
allow for data to be deleted at all granularities: individual
key-value pairs and documents, groups of key-value pairs and
documents that match a search criteria, and the entire indexes.

• Deletion latency. Elasticsearch takes a lazy approach to dele-
tion i.e., all deletion APIs simply mark the data as deleted with-
out actually erasing them from data structures and files; in-
stead, the actual deletion is carried out at a later time depending
on the runtime state of the system and user-defined configura-
tion parameters (we elaborate on this in Section-4.3).While this
approach helps Elasticsearch be highly performant, it makes it
hard to determine the latency of deletion operations.

• Deletion type. Elasticsearch’s deletion can be best categorized
as shallow. Deletion APIs make the deleted data unavailable for
the application, and eventually remove them from the internal
data structures. However, they do not attempt to delete it from
all the underlying subsystems which may contain the deleted
data. For instance, query cache, translog, and snapshots, to
name a few (we elaborate on this in Section-4.3).

In summary, Elasticsearch can support RTBF under cost- and
performance-optimal configurations. However, we identify two as-
pects of RTBF where Elasticsearch’s capabilities are lacking: cleans-
ing deletion and deletion at scale. These make Elasticsearch unsuit-
able for risk-optimal configurations.

4.2 Deletion at Scale
Scalability is one of the core aspects of Elasticsearch design, so we
investigate how deletions of scale are handled. We do so under two
configurations: bulk deletion (i.e., issuing all the delete requests
at once) and streaming deletion (i.e., issuing delete requests based
on a Poisson distribution). Bulk deletion represents the practice of
batching all the delete requests that have arrived in a window of
time, whereas streaming deletion represents a risk-averse approach
of completing the deletions as and when they arrive.

Experimental setup. We perform our experiments on Chameleon
Cloud [42]. Elasticsearch is run on a dedicated Dell PowerEdge
R6525 server with 64-core AMD EPYC 2.45GHz processor, 256MB
cache, 256GB memory, 480GB SSD storage, and Gigabit Ethernet.
We use Elasticsearch version 8.10 (released Sep 2023) and run it
in single shard, zero replica configuration. For the bulk delete experi-
ment, we disable frequentmerges by setting deletes_pct_allowed
to 50 and floor_segment to 5GB; whereas in streaming delete case,
we revert these to 5% and 1MB respectively to encourage frequent
merges. We benchmark Elasticsearch’s performance using Rally
(version 2.10, released in Nov 2023) [52]. In particular, we use the
StackOverflow track, which consists of 36 million documents, each
of which is a question and answers post from StackOverflow, adding

9

 0

 20

 40

 60

 80

 100

high-low prefix range fuzzy wildcard agg-wc-fz

o
p
/s

50%
50% w/ deletes

100%
1
6
4
.4

7
3
.2

5
5
.9

2
3
.1

1
5
.0

6
.7

T
h

ro
u

g
h

p
u

t
(%

)

Challenge Workload description

high-low boolean AND of high occurrence and
low occurrence queries

prefix search based on prefix within a field
range search based on a date range
fuzzy search based on approx. string matching
wildcard search based on wildcard patterns

agg-wc-fz wildcard based fuzzy search followed
by aggregation

Figure 4: Impact of large-scale bulk deletion. After bulk deletion of 50% data, Elasticsearch throughput remains 30-50% below
the expected level across a diverse set of Rally challenges.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 30 60 90 120 150

datasize 50%

datasize 100%

T
h
ro

u
g
h
p
u
t
(o

p
/s

)

Time (in mins)

(a) Day 1 (datasize close to 100%)

0 30 60 90 120 150 180

Time (in mins)

(b) Day 7 (datasize close to 50%)

Figure 5: Impact of long-term streaming deletion. When exposed to streaming deletes, Elasticsearch exhibits up to 40% variation
in throughput, while proportionally improving its performance due to repeated merges.

up to a total repository size of 33GB. Table in Figure 4 lists six chal-
lenges (or workloads) representing a broad mix of query complexity
that we use in our benchmarking. We configure a benchmark run
as 200 iterations of warm up followed by 500 iterations of challenge
queries.

For this experiment, we define deletion at scale as deleting 50%
of the data. To understand how Elasticsearch handles it, we estab-
lish two baselines: its performance at 100% datasize (33GB) and
its performance at 50% datasize (16.5 GB). Intuitively, we expect
the throughput at 50% datasize to be nearly twice that of 100%
datasize (since we are not scaling up our compute resources for the
additional datasize). We experimentally measure and plot these in
Figure 4 as green striped bars and green solid bars respectively. On
the Y-axis, we represent the mean throughput (normalized to the
50% case) and on the X-axis, we list the Rally challenges. Now, to
measure the impact of bulk delete: we start Elasticsearch at 100%
datasize, issue requests to delete 50% data via bulk delete API, wait
till we get success response from Elasticsearch, and then run the
benchmark challenges. We show our findings in Figure 4 using
red checkered bars. We see that after bulk deletion, performance
remains roughly at the same level as that of 100% datasize. In other
words, Elasticsearch operates at 30% to 50% below the expected
levels after a large-scale deletion. This disparity stems from Elas-
ticsearch’s design decision to retain the deleted data in its data

structures by simply marking them as expired. So, even when the
actual datasize reduces by 50%, the internal data structures to not
shrink, in turn making the search algorithms work twice as hard
only to discard half of their results later. To remedy this situation,
a forcemerge with expunge-deletes option has to be triggered—
an IO- and compute-intensive process that disrupts Elasticsearch’s
steady performance for long durations of time (for example, at this
scale, the merge takes ∼23 minutes to complete).

Next, we present the streaming delete case. Unlike the bulk delete
case, where we had disabled the shard merge process during the
benchmark runs, here we revert Elasticsearch’s behavior to its de-
fault configuration. Figure 5 plots the instantaneous throughput
(averaged over 7 minutes, on the Y-axis) and time since starting
the benchmark run (on the X-axis) for a representative Rally chal-
lenge (in this case, wildcard). Similar to the previous experiment,
we plot two baselines: 50% datasize and 100% datasize, using dot-
ted green line and solid green line respectively. Expectedly, both
of them produce a consistent throughput for the entirely of the
benchmark run, and the former is 87% better than the latter. To
measure the impact of streaming delete: we start Elasticsearch at
100% datasize, start the benchmark run, and then continually issue
Poisson-modeled delete requests at an average of 30 documents
per second (which is equivalent to deleting 50% of data over the
span of a week). In Figure 5a, we show the performance on day-1,

10

Table 3: Exploring the component-level data storage in Elasticsearch

Data structures Elastic caches Translog Snapshots Event log Replica shard

Purpose performance performance fault tolerance fault tolerance monitoring availability

Storage location memory, disk memory, cache disk disk disk external server

Retention beyond
deletion until merge depends on

system load until flush no limit no limit same as
primary

API to delete
select data

yes but timing is
not guaranteed no no no no no

when streaming deletes start rolling in. The observed throughput is
not only below the solid green bar, but also shows ∼40% variation
from the expected value. This is due to Elasticsearch’s handling
of additional delete request as well as due to the merge and flush
process being triggered during the benchmark run. At this stage of
streaming delete, the performance looks worse than the bulk delete
case. However, streaming delete paints a different picture, when we
fast forward to day 7 (in Figure 5b), at which point more than 85% of
deletions are already completed. As the benefit of these deletions is
baked into Elasticsearch state (via repeated merge operations), we
see that the throughput has improved in proportion to the deleted
data. Of course, it still shows abrupt variations as new deletion
requests keep coming in and as merge/flush operations kick in.
Finally, we have verified that once all the deletions are completed,
the throughput stabilizes at the dotted green bar level.

Summary. Our experiments demonstrate a tradeoff between bulk
delete and streaming delete approaches. The former produces a
consistent albeit lower throughput, while the latter exhibits a jittery
but constantly improving throughput.

4.3 Cleansing Delete
We describe a deletion operation as timed if it has a notion of time
associated with it. For example, TTL-based deletion, where data
would be deleted at a predetermined time; or real-time deletion,
where data would be deleted synchronously in real-time. Similarly,
we characterize a deletion to be thorough if all copies of the given
data are erased from all parts of the system. This is distinct from
sanitizing deletes [41] where data has to be irrevocably erased
from the physical hardware; instead, a thorough delete simply goes
through all the subsystems that may contain the given data and
issues a delete request on them. Combining these two properties,
we define cleansing delete as a delete operation that is both thorough
and timed.

Cleansing deletes may seem unnecessary or excessive–after all,
neither the language of the law nor the enforcement of the law
have explicitly required this. However, if one were to consider
deletion as a first-class operation, then optimizing for its speed
and quality would seem like a natural choice. We think of this as
extending the notion of clean up after yourself to data manage-
ment systems. In fact, cleansing deletes are not without a precedent.
Consider, Google cloud’s deletion guarantee [3] that all copies of

the data would be deleted from all underlying subsystems within
180 days of requesting it. In contrast, Elasticsearch’s deletion is
neither thorough nor timed. Our goal is to investigate why Elastic-
search’s deletion is not cleansing, how to fix it, and how it impacts
Elasticsearch performance.

Elasticsearch’s data footprint. Table 3 shows the main compo-
nents of Elasticsearch in which data gets stored during the create,
read, and update operations. First, the internal data structures. Both
Elasticsearch and Lucene (the search engine library on which Elas-
ticsearch is built) employ a variety of data structures to efficiently
index, query, and manage documents. These include inverted index,
k-dimensional B-Trees, document-value structures, deleted docu-
ment index, among others. Depending on the size of data, access
patterns, available hardware resources, etc, these data structures
will be stored in either in memory or on disk (or split between the
two). While Elasticsearch delete APIs allow fine-grained deletions,
they simply mark the deleted item with a tombstone but leave
them as is in the data structures. So, the only way to guarantee
a complete and immediate removal of deleted data is to trigger a
forcemerge—a practice not recommended by Elasticsearch [33].

Second is the caching system used by Elasticsearch to speedup
search performance which includes the page cache, request cache,
and query cache [59]. The page cache is typically managed by the
OS and lacks the semantic understanding of the data being cached.
The request cache stores full responses to complex queries (such
as aggregations) that are time-consuming to be run again, while
the query cache uses heuristics to identify portions of the query
responses that may be useful for other queries and stores them
selectively. Neither Elasticsearch nor OS provide any APIs to evict
select data items, even the deleted ones; so, the only option to
remove any item is to clear the entire cache.

The next two components, transaction log and snapshots, bring
fault tolerance to Elasticsearch. Translog is a record of all mod-
ifications to Elasticsearch (such as inserts, updates, and deletes)
that have been accepted but not yet been committed to the Lucene
index on the disk. The idea is to flush changes to the Lucene index
in batches, so the overhead is amortized. However, to make this
scheme crash consistent (i.e., retain modifications after a process
crash or hardware failure), Translog itself has to be continually
saved to the disk. Issuing a delete request on a data item that is
present in Translog will not remove it from Translog; instead, it

11

will continue to be there until Translog becomes large enough to
be flushed (controlled by the parameter flush_threshold_size).
On the other hand, snapshot is a full backup of an Elasticsearch
instance that can be used to transfer Elasticsearch between servers
and to restore after a hardware failure. These exist as immutable
files on the disk. Unfortunately, there are no APIs to remove select
data items from a snapshot. The only way to achieve this would be
to restore a snapshot, perform the deletions, and then create a new
snapshot in its place.

The fifth element is the logging mechanism. While Elasticsearch
generates several types of logs during its operation, two of them
can contain actual data: Elasticsearch.log when set to the level
trace and slowlog. By default, these are stored on the disk and
are automatically compressed with passage of time. Elasticsearch
neither provides an API to search logs that contain a given data item
nor offer mechanisms to selectively delete items. However, since
log files are in human readable ASCII, standard file I/O operations
could be used to accomplish these tasks.

The final component is the replica shard. Elasticsearch employs
a primary-backup model to improve availability. All indexing oper-
ations of Elasticsearch are directed to the primary, which is then
responsible for pushing any change in its state to all the replicas.
On the other hand, read requests can be sent to either primary or
one of the replicas, depending on the system load. Thus, replica
nodes will have their own data structures, caches, translog, and
event logs as discussed in Table 3. However, Elasticsearch does
not provide any APIs directly manipulate these on the replicas, in-
stead requiring all changes to be driven by the primary (in order to
keep them in sync). It must be noted that the delay in propagating
the changes from primary to replicas is negligible since these are
handled synchronously during API calls.

Cleansing delete and benchmarking. Next, we share our effort
at introducing cleansing delete for Elasticsearch. We choose to
implement this external to Elasticsearch (i.e., using its existing
APIs and OS support) as opposed to redesigning the internals of
Elasticsearch. Since our goal is to demonstrate the feasibility of
cleansing delete and estimate the resulting overhead, this approach
is sufficient (though we acknowledge that redesigning Elasticsearch
would lead to a more optimal solution). Here are our five steps
of cleansing: (i) for data structures, we issue forcemerge with
expunge-deletes option set, (ii) for cache system, we invoke the
OS command drop_caches and Elasticsearch’s index-level clear
cache API, (iii) for Translog, we issue Elasticsearch’s index-level
flush API, (iv) for snapshot, we restore it on a new server, issue
delete requests on the select data, flush and forcemerge the index,
and then create a new snapshot to replace the old one, (v) finally,
for event logs, we iterate through all the files in the log directories
and edit out the select data. We implement all these routines in ∼
450 lines of Python code.

To benchmark our cleansing delete, we use the same experimen-
tal setup as in Section-4.2. Forcemerge on index takes O(milliseconds)
to O(minutes), while flush runs in O(milliseconds) to O(seconds).
Elasticsearch can continue to run workloads, albeit at a reduced
throughput, while these two operations are going on. Clearing the
cache is near instantaneous, taking just a few milliseconds, but

impacts the performance of Elasticsearch significantly until the
caches become hot again. Restoring and creating a snapshot on the
full StackOverflow workload takes ∼12 minutes each in our setup,
while event log culling runs in O(seconds). So, if we delete a single
document and then issue a cleansing delete in our setup, the whole
process takes about 24 minutes to complete and is bottlenecked by
snapshot cleansing. On the other hand, if we delete 50% of docu-
ments (as in Section-4.2) and then trigger cleansing deletion, the
forcemerge operation takes ∼23 minutes, taking the total time to
45 minutes.

5 CONCLUSION
Ever since its introduction, RTBF has triggered vigorous debates
in our society–from being hailed it as a counterbalance to the ag-
gressive data practices of the 21st century to being criticized as a
means to rewrite history, weaken the freedom of expression, and
enable censorship. This work is an attempt to bring clarity about
implementing RTBF from a computing and data management per-
spective. We believe that our principled approach to understanding
the law and enforcement of RTBF, and then translating them to
implementable actions in computing systems, will bridge the dis-
connect between legal and computing domains.

Acknowledgment. Any opinions, findings, or recommendations
expressed herein are those of the authors; these should neither be
interpreted as legal advice nor as reflective of the views of their
host institution.

REFERENCES
[1] 2012. Charter of Fundamental Rights of the European Union. Official Journal of

the European Union 55, 391-407 (2012).
[2] 2016. Regulation (EU) 2016/679 of the European Parliament and of the Council of

27 April 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing Directive
95/46. Official Journal of the European Union 59, 1-88 (2016).

[3] 2018. Data Deletion on Google Cloud Platform. https://cloud.google.com/
security/deletion/.

[4] 2023. Amazon Macie: Discover and protect your sensitive data at scale. https:
//aws.amazon.com/macie/.

[5] 2023. ElasticSearch. https://github.com/elastic/elasticsearch.
[6] 2023. GDPR Compliance and The Elastic Stack. https://www.elastic.co/pdf/white-

paper-elastic-gdpr-compliance-and-the-elastic-stack.pdf.
[7] AEPD and EDPS. 2021. AEPD-EDPS joint paper on 10 misunderstandings related

to anonymisation. https://edps.europa.eu/system/files/2021-04/21-04-27_aepd-
edps_anonymisation_en_5.pdf.

[8] Steven Bauer and Nissanka B Priyantha. 2001. Secure data deletion for Linux
file systems. In USENIX Security.

[9] Theo Bertram, Elie Bursztein, Stephanie Caro, Hubert Chao, Rutledge Chin Fe-
man, Peter Fleischer, Albin Gustafsson, Jess Hemerly, Chris Hibbert, Luca Inv-
ernizzi, et al. 2019. Five years of the right to be forgotten. In ACM CCS.

[10] European Data Protection Board. 2019. The Danish Data Protec-
tion Agency proposes a DKK 1.2 million fine for Danish taxi com-
pany. https://edpb.europa.eu/news/national-news/2019/danish-data-protection-
agency-proposes-dkk-12-million-fine-danish-taxi_en.

[11] European Data Protection Board. 2020. The Swedish Data Protection Authority
imposes administrative fine on Google. https://edpb.europa.eu/news/national-
news/2020/swedish-data-protection-authority-imposes-administrative-fine-
google_en.

[12] Christoph Bösch, Benjamin Erb, Frank Kargl, Henning Kopp, and Stefan Pfatthe-
icher. 2016. Tales from the dark side: privacy dark strategies and privacy dark
patterns. PoPETS 2016, 4 (2016), 237–254.

[13] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine unlearning. In IEEE Symposium on Security and Privacy.

[14] H Brignull, M Leiser, C Santos, and K Doshi. 2023. Deceptive patterns – user
interfaces designed to trick you. https://www.deceptive.design/

12

https://cloud.google.com/security/deletion/
https://cloud.google.com/security/deletion/
https://aws.amazon.com/macie/
https://aws.amazon.com/macie/
https://github.com/elastic/elasticsearch
https://www.elastic.co/pdf/white-paper-elastic-gdpr-compliance-and-the-elastic-stack.pdf
https://www.elastic.co/pdf/white-paper-elastic-gdpr-compliance-and-the-elastic-stack.pdf
https://edps.europa.eu/system/files/2021-04/21-04-27_aepd-edps_anonymisation_en_5.pdf
https://edps.europa.eu/system/files/2021-04/21-04-27_aepd-edps_anonymisation_en_5.pdf
https://edpb.europa.eu/news/national-news/2019/danish-data-protection-agency-proposes-dkk-12-million-fine-danish-taxi_en
https://edpb.europa.eu/news/national-news/2019/danish-data-protection-agency-proposes-dkk-12-million-fine-danish-taxi_en
https://edpb.europa.eu/news/national-news/2020/swedish-data-protection-authority-imposes-administrative-fine-google_en
https://edpb.europa.eu/news/national-news/2020/swedish-data-protection-authority-imposes-administrative-fine-google_en
https://edpb.europa.eu/news/national-news/2020/swedish-data-protection-authority-imposes-administrative-fine-google_en
https://www.deceptive.design/

[15] William Brown, Raphael Malveau, Hays McCormick, and Thomas Mowbray.
1998. AntiPatterns: refactoring software, architectures, and projects in crisis. John
Wiley & Sons, Inc.

[16] Yinzhi Cao and Junfeng Yang. 2015. Towards making systems forget with
machine unlearning. In IEEE symposium on security and privacy.

[17] Grand Chamber. 2014. Google Spain SL and Google Inc. v Agencia Española de
Protección de Datos (AEPD) and Mario Costeja González. https://eur-lex.europa.
eu/legal-content/EN/TXT/PDF/?uri=CELEX:62012CJ0131. The Court of Justice of
the European Union - Reports of Cases (2014).

[18] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. 2022. Graph unlearning. In ACM CCS.

[19] CNIL. 2021. Deliberation SAN-2021-008. https://www.legifrance.gouv.fr/cnil/id/
CNILTEXT000043668709.

[20] CNIL. 2022. Facial recognition: 20 million euros penalty against CLEARVIEW
AI. In Restricted Committee Deliberation No. SAN-2022-019. (Oct 20 2022).

[21] Aloni Cohen and Kobbi Nissim. 2020. Towards formalizing the GDPR’s notion
of singling out. PNAS 117, 15 (2020), 8344–8352.

[22] Katriel Cohn-Gordon, Georgios Damaskinos, Divino Neto, Joshi Cordova, Benoît
Reitz, Benjamin Strahs, Daniel Obenshain, Paul Pearce, and Ioannis Papagiannis.
2020. DELF: safeguarding deletion correctness in online social networks. In
USENIX Security.

[23] Irish Data Protection Commission. 2019. Guidance on Anonymisation and
Pseudonymisation. https://www.dataprotection.ie/sites/default/files/uploads/
2019-06/190614%20Anonymisation%20andi%20Pseudonymisation.pdf.

[24] Ireland Data Protection Commission. 2020. Groupon International Limited - De-
cember 2020. https://dataprotection.ie/en/dpc-guidance/law/decisions/groupon-
december-2020.

[25] Ireland Data Protection Commission. 2022. Twitter International Com-
pany - April 2022. https://dataprotection.ie/en/resources/law/decisions/twitter-
international-company-april-2022.

[26] Sophie Curtis and Alice Philipson. 2014. Wikipedia founder: EU’s Right to be
Forgotten is deeply immoral. In The Telegraph. (Aug 6 2014).

[27] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor,
and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.. In CIDR,
Vol. 3. 3.

[28] Hellenic DPA. 2020. Complaint by a prospective insured against
an insurance company for failure to satisfy the right to deletion.
https://www.dpa.gr/el/enimerwtiko/prakseisArxis/kataggelia-ypopsifioy-
asfalismenoy-kata-asfalistikis-etaireias-gia-mi.

[29] Hellenic DPA. 2022. Hellenic DPA fines Clearview AI 20 million euros. In EDPB
News. (Jul 20 2022).

[30] David Drummond. 2014. We need to talk about the right to be forgotten. In The
Guardian. (Jul 10 2014).

[31] Alan M Dunn, Michael Z Lee, Suman Jana, Sangman Kim, Mark Silberstein,
Yuanzhong Xu, Vitaly Shmatikov, and Emmett Witchel. 2012. Eternal sunshine
of the spotless machine: Protecting privacy with ephemeral channels. In USENIX
OSDI.

[32] EDPB. 2020. Guidelines 5/2019 on the criteria of the Right to be
Forgotten in the search engines cases under the GDPR. https:
//edpb.europa.eu/sites/default/files/consultation/edpb_guidelines_201905_
rtbfsearchengines_forpublicconsultation.pdf. (Jul 7 2020).

[33] Elasticsearch. 2024. Force merge API. In Elastic Guide. https://www.elastic.
co/guide/en/elasticsearch/reference/current/indices-forcemerge.html. (Jan 17
2024).

[34] Wikimedia Foundation. 2023. Transparency Reports. https:
//wikimediafoundation.org/about/transparency/.

[35] Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan. 2020. Formaliz-
ing data deletion in the context of the right to be forgotten. In EUROCRYPT.

[36] Samuel Gibbs. 2014. Larry Page: right to be forgotten could empower government
repression. In The Guardian. (May 30 2014).

[37] Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. 2019. Making
ai forget you: Data deletion in machine learning. Advances in neural information
processing systems (NeurIPS) 32 (2019).

[38] Colin Gray, Yubo Kou, Bryan Battles, Joseph Hoggatt, and Austin Toombs. 2018.
The dark (patterns) side of UX design. In Proceedings of the 2018 CHI conference
on human factors in computing systems.

[39] Hana Habib, Sarah Pearman, Jiamin Wang, Yixin Zou, Alessandro Acquisti,
Lorrie Faith Cranor, Norman Sadeh, and Florian Schaub. 2020. " It’s a scavenger
hunt": Usability of Websites’ Opt-Out and Data Deletion Choices. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems.

[40] Hana Habib, Yixin Zou, Aditi Jannu, Neha Sridhar, Chelse Swoopes, Alessandro
Acquisti, Lorrie Faith Cranor, Norman Sadeh, and Florian Schaub. 2019. An
empirical analysis of data deletion and opt-out choices on 150 websites. In
Proceedings of the 15th Symposium on Usable Privacy and Security (SOUPS 2019).

[41] Gordon F Hughes, Tom Coughlin, and Daniel M Commins. 2009. Disposal of
disk and tape data by secure sanitization. IEEE Security & Privacy 7, 4 (2009).

[42] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan
Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock,

Joe Mambretti, Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs.
2020. Lessons Learned from the Chameleon Testbed. In USENIX ATC.

[43] Andrew Koenig. 1995. Patterns and Antipatterns. Journal of Object-Oriented
Programming 8, 1 (1995), 46–48.

[44] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-Store 7
Years Later. PVLDB 5, 12 (2012).

[45] CMS Law. 2023. GDPR Enforcement Tracker. https://www.enforcementtracker.
com/.

[46] Yi Liu, Lei Xu, Xingliang Yuan, Cong Wang, and Bo Li. 2022. The Right to be
Forgotten in Federated Learning: An Efficient Realization with Rapid Retraining.
In IEEE INFOCOM.

[47] Arunesh Mathur, Gunes Acar, Michael J Friedman, Eli Lucherini, Jonathan Mayer,
Marshini Chetty, and Arvind Narayanan. 2019. Dark patterns at scale: Findings
from a crawl of 11K shopping websites. Proceedings of the ACM on Human-
Computer Interaction 3, CSCW (2019), 1–32.

[48] AruneshMathur, Mihir Kshirsagar, and JonathanMayer. 2021. Whatmakes a dark
pattern... dark? design attributes, normative considerations, and measurement
methods. In Proceedings of the 2021 CHI conference on human factors in computing
systems.

[49] Viktor Mayer-Schönberger. 2011. Delete: The virtue of forgetting in the digital
age. Princeton University Press.

[50] Microsoft. 2023. Right to be forgotten Requests. https://www.microsoft.com/en-
us/corporate-responsibility/right-to-be-forgotten-removal-requests-report.

[51] Mohsen Minaei, Mainack Mondal, and Aniket Kate. 2022. Empirical Understand-
ing of Deletion Privacy: Experiences, Expectations, and Measures. In USENIX
Security.

[52] Daniel Mitterdorfer. 2016. Announcing Rally: Our benchmarking tool for
Elasticsearch. In Elastic Blog. https://www.elastic.co/blog/announcing-rally-
benchmarking-for-elasticsearch. (Apr 19 2016).

[53] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust de-anonymization of
large sparse datasets. In IEEE Symposium on Security and Privacy. 111–125.

[54] UK Information Commissioner’s Office. 2022. ICO fines facial recognition data-
base company Clearview AI Inc more than 7.5M GBP and orders UK data to be
deleted. In Monetary Penalty Notices. (May 22 2022).

[55] Data Protection Working Party. 2014. Opinion 05-2014 on Anonymisation
Techniques. https://ec.europa.eu/justice/article-29/documentation/opinion-
recommendation/files/2014/wp216_en.pdf.

[56] Eugenia Politou, Alexandra Michota, Efthimios Alepis, Matthias Pocs, and Con-
stantinos Patsakis. 2018. Backups and the right to be forgotten in the GDPR: An
uneasy relationship. Computer Law & Security Review 34, 6 (2018).

[57] Joel Reardon, David Basin, and Srdjan Capkun. 2013. Sok: Secure data deletion.
In IEEE symposium on security and privacy (OAKLAND).

[58] Joel Reardon, Hubert Ritzdorf, David Basin, and Srdjan Capkun. 2013. Secure
data deletion from persistent media. In ACM CCS.

[59] Alexander Reelsen. 2021. Elasticsearch caching deep dive: Boosting query speed
one cache at a time. In Elastic Blog. https://www.elastic.co/blog/elasticsearch-
caching-deep-dive-boosting-query-speed-one-cache-at-a-time. (Mar 4 2021).

[60] Luc Rocher, Julien M Hendrickx, and Yves-Alexandre De Montjoye. 2019. Esti-
mating the success of re-identifications in incomplete datasets using generative
models. Nature communications 10, 1 (2019), 1–9.

[61] Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanas-
soulis. 2020. Lethe: A tunable delete-aware LSM engine. In ACM SIGMOD.

[62] Max Schrems. 2023. GDPRhub. https://gdprhub.eu/.
[63] Supreeth Shastri, Vinay Banakar, Melissa Wasserman, Arun Kumar, and Vijay

Chidambaram. 2020. Understanding and Benchmarking the Impact of GDPR on
Database Systems. PVLDB 13, 7 (2020).

[64] Chen Sun, Evan Jacobs, Daniel Lehmann, Andrew Crouse, and Supreeth Shas-
tri. 2023. GDPRxiv: Establishing the State of the Art in GDPR Enforcement.
Proceedings on Privacy Enhancing Technologies (POPETS) 4 (2023).

[65] Kejsi Take, Kevin Gallagher, Andrea Forte, DamonMcCoy, and Rachel Greenstadt.
2022. “it feels like whack-a-mole”: User experiences of data removal from people
search websites. Proceedings on Privacy Enhancing Technologies 3 (2022).

[66] Ana Paula Vazão, Leonel Santos, Rogério Luís de C Costa, and Carlos Rabadão.
2023. Implementing and evaluating a GDPR-compliant open-source SIEM solu-
tion. Journal of Information Security and Applications 75 (2023), 103509.

[67] James Q Whitman. 2003. The two western cultures of privacy: Dignity versus
liberty. Yale Law Journal 113 (2003), 1151.

[68] Dawen Zhang, Pamela Finckenberg-Broman, Thong Hoang, Shidong Pan, Zhen-
chang Xing, Mark Staples, and Xiwei Xu. 2023. Right to be Forgotten in the
Era of Large Language Models: Implications, Challenges, and Solutions. arXiv
preprint arXiv:2307.03941 (2023).

[69] Jonathan Zittrain. 2015. The right to be forgotten ruling leaves nagging doubts.
In The Financial Times. (Jul 19 2015).

13

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:62012CJ0131
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:62012CJ0131
https://www.legifrance.gouv.fr/cnil/id/CNILTEXT000043668709
https://www.legifrance.gouv.fr/cnil/id/CNILTEXT000043668709
https://www.dataprotection.ie/sites/default/files/uploads/2019-06/190614%20Anonymisation%20andi%20Pseudonymisation.pdf
https://www.dataprotection.ie/sites/default/files/uploads/2019-06/190614%20Anonymisation%20andi%20Pseudonymisation.pdf
https://dataprotection.ie/en/dpc-guidance/law/decisions/groupon-december-2020
https://dataprotection.ie/en/dpc-guidance/law/decisions/groupon-december-2020
https://dataprotection.ie/en/resources/law/decisions/twitter-international-company-april-2022
https://dataprotection.ie/en/resources/law/decisions/twitter-international-company-april-2022
https://www.dpa.gr/el/enimerwtiko/prakseisArxis/kataggelia-ypopsifioy-asfalismenoy-kata-asfalistikis-etaireias-gia-mi
https://www.dpa.gr/el/enimerwtiko/prakseisArxis/kataggelia-ypopsifioy-asfalismenoy-kata-asfalistikis-etaireias-gia-mi
https://edpb.europa.eu/sites/default/files/consultation/edpb_guidelines_201905_rtbfsearchengines_forpublicconsultation.pdf
https://edpb.europa.eu/sites/default/files/consultation/edpb_guidelines_201905_rtbfsearchengines_forpublicconsultation.pdf
https://edpb.europa.eu/sites/default/files/consultation/edpb_guidelines_201905_rtbfsearchengines_forpublicconsultation.pdf
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html
https://wikimediafoundation.org/about/transparency/
https://wikimediafoundation.org/about/transparency/
https://www.enforcementtracker.com/
https://www.enforcementtracker.com/
https://www.microsoft.com/en-us/corporate-responsibility/right-to-be-forgotten-removal-requests-report
https://www.microsoft.com/en-us/corporate-responsibility/right-to-be-forgotten-removal-requests-report
https://www.elastic.co/blog/announcing-rally-benchmarking-for-elasticsearch
https://www.elastic.co/blog/announcing-rally-benchmarking-for-elasticsearch
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://www.elastic.co/blog/elasticsearch-caching-deep-dive-boosting-query-speed-one-cache-at-a-time
https://www.elastic.co/blog/elasticsearch-caching-deep-dive-boosting-query-speed-one-cache-at-a-time
https://gdprhub.eu/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 RTBF
	2.2 Challenges in Complying with RTBF
	2.3 Related Work

	3 Designing RTBF
	3.1 Phase-1: Law-driven Design
	3.2 Phase-2: Enforcement-driven Refinement
	3.3 RTBF Anti-Patterns
	3.4 RTBF Tradeoffs

	4 RTBF-Capable Elasticsearch
	4.1 Is Elasticsearch RTBF Capable?
	4.2 Deletion at Scale
	4.3 Cleansing Delete

	5 Conclusion
	References

